FORMATION AND CHARACTERIZATION OF TRICHLOROTITANIUM ENOLATES

Eiichi NAKAMURA, Jun-ichi SHIMADA, Yoshiaki HORIGUCHI, and Isao KUWAJIMA* Department of Chemistry, Tokyo Institute of Technology Meguro, Tokyo 152, Japan

<u>Summary</u>: The reaction of enol silyl ethers with TiCl₄ gives trichlorotitanium enolates, which are unique with their relatively electron deficient double bonds.

Despite extensive research about the enolate anion, relatively little has been known for the properties of transition metal enolates.¹ We report in this communication the preparation and the characterization of titanium enolates and, in the following, their aldol reaction.²

Reddish trichlorotitanium enolates readily form in better than 90% NMR yield (except 1b and 7b formed in 60-70% yield) by the reaction of the corresponding enol silyl ethers and 1 equiv of TiCl, at 20-35 °C in a halomethane solvent. The enolate formation in the cyclohexanone series is rapid and completes within 5 to 15 min; 5a reacted most rapidly within a few minutes and the substituted ones more slowly. Interestingly, the reaction of 3a, being stereospecific, completed within a few minutes, while that of 4atook 2 h for 50% conversion at ca. 30 °C, giving a 1:1 mixture of 3b and 4b. During the course of the latter reaction, the isomeric ratio remained virtually unchanged. Of the two stereoisomers of the enol silyl ethers of 3-pentanone, only the Z-isomer afforded the titanium enolate in good yield. The stability of the titanium enolate (as formed in CDCl₂ under nitrogen and kept at 20-30 °C) depends greatly on the structure of substrates: The cyclopentanone enolate appears to decompose as it forms, the cyclohexanone enolate 5b remains stable for less than 10 min, enolates, 1b, 6b, 7b, and 8b, for some hours, and the most stable ones, 3b (isolable as a brown solid) and 4b, for an order of a few days.

Enol silyl ethers react with $SnCl_4$ to afford α -stannyl ketones.³ The formation of metal enolates in the reaction with $TiCl_4$ is therefore highly intriguing. The enolate structure of the products was generally deduced from their ¹H NMR spectra (Table 1). The triplet of the vinyl protons in the cyclohexanone series closely resembles in shape that of the respective starting

3341

materials. This stands in contrast to the appearence of a doublet of doublets with α -stannyl³ and α -mercurio⁴ ketones. Additional information concerning the structure comes from the presence of a single methyl resonance in the ¹H NMR spectrum of <u>6b</u>; the corresponding metallo ketone <u>9</u> shows two nonequivalent methyl groups owing to the chiral center generated by the attachment of the metal to the carbon atom. Without the crucial olefinic proton, the enolate structure of <u>8b</u> could only be ascertained by ¹³C NMR analysis. The spectrum of <u>8b</u> is clearly incompatible with the metallo ketone formulation. The α -stannyl ketone <u>9</u> shows its carbonyl carbon at a very low field: 215.9 (s), 67.4 (d), 46.9 (s), 40.4 (t), 30.6 (t), 25.1 (g), 23.0 (t).

The NMR signals of the olefinic protons and carbons of the titanium enolate appear exceptional as an enol derivative.⁵ The olefinic carbon signals of <u>6b</u>, for instance, appear at 181.1 and 114.8 ppm, while the signals of the silyl ether <u>6a</u> are located at 157.0 and 101.4 ppm. The lithium enolates generally exhibit their carbon signals at much higher fields.⁶ The trichlorotitanium group thus exerts a significant electron withdrawing effect instead of an electron release usually expected for a metal atom.

Among other metal chlorides examined thus far, SbCl_5 and TeCl_4 reacted with enol silyl ethers to give α -metallo ketones. Studies on the mechanism and the possible reasons of the metal-dependent dichotomy in the reaction of enol silyl ethers with metal salts are under way.

a series: OM OM R^1 $R = 5: H H H O SnCl$	3
$M = SIMe_3$ $($ $\underline{6}$: H Me H ($\underline{6}$: H Me H $($ $\underline{6}$: H Me H ($\underline{6}$: H Me (H ($\underline{6}$: H Me (H ($\underline{6}$: H () () ($\underline{6}$: H () () () () () () () () () () () () ()	J
b series: $\underline{1}$: (\underline{Z}) $\underline{3}$: (\underline{Z}) $\underline{7}$: H H Me	
$M = \text{TiCl}_3 \underline{2}: (\underline{E}) \qquad \underline{4}: (\underline{E}) \qquad \mathbb{R}^2 \mathbb{R}^2 \underline{8}: \text{ Me H H} \qquad \underline{9}$	
Table I. NMR Spectra (CDCl ₃) of Trichlorotitanium Enolates	
Compd No. ¹ H NMR (multiplicity, J) ¹³ C NMR (multiplicity)	
1b = 4.67 (a = 7) = 2.30 (a = 1.5 = 7) = 175.4 (s) = 108.7 (d)	
$\frac{15}{1.76} (q, 7), 2.30 (qq, 1.3, 7) 1.011 (57) 10017 (a)$	
$3b 4.94 (q, 7), \ 2.05 (d, 7) \qquad 169.4 (s), \ 139.4 (s), \ 136.8 (s), \ 132.$	4
(s), 128.4 (d), 113.6 (d), 21.1 (q), 20.1 (g), 11.4 (g)	
20.1 (q), 11.4 (q)	
5b 5.88 (br t)	
$\overline{6b} 5.56 \ (t, \ 4.5), \ 1.27 \ (s) \qquad 181.1 \ (s), \ 114.8 \ (d), \ 38.7 \ (t), \ 37.1 \\ 26.9 \ (r) \qquad 24.2 \ (t) \qquad 10.9 \ (t) \qquad (t), \ 37.1 \\ (t) \qquad 10.9 \ (t) \qquad ($	(s),
26.9 (q), 24.3 (t), 18.8 (t)	
8b 1.90 (m) 170.1 (s), 120.7 (s), 29.7 (t), 28.9	(t),
23.9 (t), 23.0 (t), 22.1 (t), 16.6 (q)

References

 Reetz, M. R.; Peter, R. Tetrahedron Lett. 1981, 22, 4691. Evans, D. A.; McGee, L. R. ibid. 1980, 3975.
Nakamura, E.; Kuwajima, I.; following communications in this issue.
Nakamura, E.; Kuwajima, I. Chem. Lett. 1983, 59.
Kitching, W.; Grew, G. M. J. Org. Chem. 1981, 46, 2695.
Stothers, J. B. "Carbon-13 NMR Spectrocopy "; Academic Press: NY, 1972.
Jackman, L. M.; Szeverenyi, N. M. J. Am. Chem. Soc. 1977, <u>99</u>, 4954.

(Received in Japan 19 April 1983)